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Abstract
A Jordan–Wigner (JW) transformation for the t–J and Hubbard models is
described. Holon and doublon particles for hole and double occupied sites
are introduced. There is only a single spin sector particle. Flux tubes occur
in a natural fashion, within a specific gauge, when the method is adapted to
two dimensions. In order to accommodate three dimensions ‘JW sheets’ are
defined. The adaptation of the method to the t–J model in the context of high
Tc is described.

(Some figures in this article are in colour only in the electronic version)

While the Jordan–Wigner transformation [1] is well known in the context of spin only models
such as the Heisenberg or X–Y model it does not seem to be widely known that a similar
approach can be used for doped systems such as the t–J or Hubbard models and that this
provides a useful alternative formulation of such models in two dimensions in the context of
high-Tc superconductors. The purpose of this Letter is to describe such a formalism along
with some elementary conclusions which are evident on the basis of this formalism.

Recall first the basic JW transformation in one dimension. It is trivial for S = 1/2 that
σ +
n obey on-site Fermi commutation rules and that

f †
n = exp

(
iπ

n−1∑
m=1

Q̂m

)
σ +
n (1)

obeys such rules even when the site indices are different. Here Q̂n = f †
n fn, i.e. is the number of

particles at site n. It is then straightforward to show [1] that, for example, the one-dimensional
Heisenberg Hamiltonian H = J

∑
n

�Sn · �Sn+1 becomes

H = J

2

∑
n

(f †
n fn+1 + H.c.) + J

∑
n

f †
n fnf

†
n+1fn+1 − J N̂↑ (2)

where, with N̂↑ = ∑
n f

†
n fn, the last term reflects an effective chemical potential µ = J .
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This can, in fact, be generalized to include charge. Since σ +
n is considered to be a creation

operator it is implicit that the vacuum is the down spin ferromagnetic state. Creating an f †
n -

fermion implies an up spin at the site n. In the usual way a b†
n-boson corresponds to a true

vacuum state |0〉 without any particle, i.e. to the presence of a hole, while ad†
n-boson implies that

the siten is in the state c†
↑nc

†
↓n|0〉, which is doubly occupied. The physical operators are given by

σ +
n = exp

(
−iπ

n−1∑
m=1

Q̂mf
†
n

)
(3a)

c
†
↑n =

(
f †
n bn + d†

n exp

(
−iπ

n−1∑
m=1

Q̂m

))
exp(iπN̂↑) (3b)

c
†
↓n =

(
bn exp

(
−iπ

n−1∑
m=1

Q̂m − d†
nfn

))
exp(iπN̂↑) (3c)

where now Q̂n = f †
n fn + b†

nbn + d†
ndn counts all particles and where there is a constraint that

Qn � 1, i.e. the particles have a hard core. It is straightforward to check that these obey the
appropriate commutation rules when the site indices are different.

When the the site indices are the same it is not the case that {c↑n, c
†
↑n} = 1 if the algebra

of the auxiliary particles is applied without strictly applying the constraint. What is easily
verified is that the matrix elements of say c

†
↑n on the physical sub-space are correctly given;

however, it is implied that in the product, for example c
†
↑nc↑n, it is necessary to include a

physical complete set of states between the two operators. In this regard the present scheme
differs from the traditional auxiliary particle scheme [2], for which this is not necessary. It
is implied that care must be exercised when constructing, in particular, the auxiliary particle
version of the Hamiltonian. Every physical operator, for the site n, can be written in terms of
the product of one or two of the new auxiliary particles since any operator can be written in
terms of

| ↓〉〈↓ | = 1 − (f †
n fn + b†

nbn + d†
ndn) | ↑〉〈↑ | = f †

n fn

|0〉〈0| = b†
nbn | ↑↓〉〈↑↓ | = d†

ndn

|0〉〈↑ | = b†
nfn | ↑↓〉〈↑ | = d†

nfn | ↑↓〉〈0| = d†
nbn

| ↑〉〈↓ | = exp

(
−iπ

n−1∑
m=1

Q̂m

)
f †
n

|0〉〈↓ | = exp

(
−iπ

n−1∑
m=1

Q̂m

)
exp(iπN̂↑)b†

n

| ↑↓〉〈↓ | = exp

(
−iπ

n−1∑
m=1

Q̂m

)
exp(iπN̂↑)d†

n

(4)

and their Hermitian conjugates.
For the one-dimensional t–J model the phase operators, exp(iπN̂↑) and

exp(−iπ
∑n−1

m=1 Q̂m), cancel and the result is

H = −t
∑
n

(f †
n bnb

†
n+1fn+1 + b†

nbn+1 + H.c.) +
J

2

∑
n

(f †
n fn+1 + H.c.)

+
J

4

∑
n

(2f †
n fn + b†

nbn)(2f
†
n+1fn+1 + b

†
n+1bn+1) − J N̂↑. (5)
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n

m

(a) (b)

Figure 1. (a) The zig-zag path used for the Jordan–Wigner transformation. (b) The ‘string’ flux
lines used to evaluate the sign changes due to the Jordan–Wigner transformation.

The Hubbard model becomes

H = −t
∑
n

(f †
n bnb

†
n+1fn+1 + d†

nfnf
†
n+1dn+1 + b†

nbn+1 + d†
ndn+1 + H.c.) + Ud†

ndn

−t
∑
n

(
f †
n bndn+1 exp

(
−iπ

n∑
m=1

Q̂m

)
+ dnf

†
n+1bn+1 exp

(
−iπ

n−1∑
m=1

Q̂m

)

+ d†
nfnb

†
n+1 exp

(
−iπ

n∑
m=1

Q̂m

)
+ b†

nd
†
n+1fn+1 exp

(
−iπ

n−1∑
m=1

Q̂m

)
+ H.c.

)
. (6)

Even in one dimension, for the Hubbard model, the JW formulation leads to non-cancelling
factors of exp

(−iπ
∑n−1

m=1 Q̂m

)
while in two dimensions the occurrance of these factors is

quite general. The challenge is therefore to develop a formalism in which these factors can be
systematically accounted for. The transformation can be used for a two-dimensional system
once a mapping to one dimension is defined. One possible map, shown in figure 1(a), is to
use a zig-zag path whence even for the t–J model the factors of exp

(−iπ
∑n−1

m=1 Q̂m

)
appear.

Each site is ordered by a single site label and the sum in this factor simply counts the number
of particles with smaller such labels. It is well known that, for example, the up spins of
the problem, which are equivalent to hard-core bosons, might be converted to fermions by
attaching a unit flux tube. The awkward factors of exp

(−iπ
∑n−1

m=1 Q̂m

)
in fact represent such

flux tubes in a certain ‘string’ gauge.
Consider the appropriate such phase factor for vertical exchange J -coupling, between

sites n and m, as shown in figure 1(b). The appropriate term in the Hamiltonian is easily seen
to be

exp

(
−iπ

m−1∑
q=n+1

Q̂q

)
J (f †

mfn + H.c.) n < m (7)

where the sum
∑m−1

q=n+1 Q̂m counts the number of particle between the two sites following the

prescribed path. The resulting phase factor exp
(−iπ

∑m−1
q=n+1 Q̂q

)
can be evaluated using the

diagram method illustrated in this figure. To each particle are attached two lines or ‘strings’, as
shown, which leave the system without crossing the zig-zag path, i.e. leave by the open ends.
It follows that

exp

(
−iπ

m−1∑
q=n+1

Q̂q

)
= (−1)L (8)

where L is the number of lines which cross a straight line joining the sites n and n′. Put
differently, L is the number of lines cut when the particle hops from site n to site m. In a
fermion plus flux tube formulation the same phase factor would be exp[−i

∫ m

n
�a · d�r], where

�a is an appropriately defined vector potential. The identification is therefore∫
�a · d�r = πL. (9)
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Any path which encloses a single particle cuts two lines and has∫
�a · d�r = 2π (10)

corresponding to a single flux quantum. Evidently different mappings from one to two
dimensions correspond to a different version of this JW string gauge. The phase factors
appropriate to the correlation function are also determined, for example

〈[S+
n (t), S

−
m(0)]〉 = (−1)Lnm〈[f †

n (t), fm(0)]〉 (11)

where Lnm is the number of lines crossed for any path joining the sites n and m which does
not pass through any particle. (It need not necessarily follow bonds.)

With this method, for example, the full t–J model for a two-dimensional square lattice is

H = −
∑
〈ij〉

(tf
†
i bib

†
j fj + tij b

†
i bj + H.c.) +

∑
〈ij〉

Jij

2
(f

†
i fj + H.c.)

+
J

4

∑
〈ij〉

(2f †
i fi + b

†
i bi)(2f

†
j fj + b

†
j bj ) − J (2N̂↑ + N̂0) (12)

where tij = (−1)Lij t and Jij = (−1)Lij J and where Lij is the number of strings crossed in
going for the site i to j as described above. Here N̂0 = ∑

i b
†
i bi . There is no factor (−1)Lij

in the f
†
i bib

†
j fj term since the factors exp

(−iπ
∑n′−1

m=n+1 Q̂m

)
cancel. (The term involves the

exchange of particles and hence each crosses the same number of strings and the total number is
necessarily even.) These factors also cancel in the static interaction term with the prefactor J

4 .
(Here there is no movement of particles and hence no strings are crossed.)

It is rather obvious, for the, x = 0, undoped case, that for the physical correlation function
〈[S+

n (t), S
−
m(0)]〉 = (−1)Lnm〈[f †

n (t), fm(0)]〉 the string prefactor (−1)Lnm cancels against the
similar factors in Jij contained in the propagator and that hence this quantity is gauge invariant.
In the doped case the same result is less obvious since the spin particle can propagate by an
exchange with a holon (or doublon) and such a hopping process does not ‘see’ the flux.
However, the holon (or doublon) must move on a closed path and in the end the (−1)Lnm

factors involved in closing the path compensate. Similarly for charge propagators, for example,
within the t–J model 〈Tτ c

†
n↓(τ )cm↓(0)〉 = (−1)Lnm〈Tτbn(τ )b

†
m(0)〉 and similar statements can

be made. Thus in general, for example,

〈[S+
n (t), S

−
m(0)]〉 = exp

[
− i

∫ m

n

�a · d�r
]
〈[f †

n (t), fm(0)]〉. (13)

When making potential gauge transformations it is worth noting that the sense of a unit flux tube
is immaterial. In particular, for a bipartite lattice, alternating the sense of the flux according to
the sub-lattice is an easy way to avoid making gauge transformations which create (unphysical)
currents at the boundaries.

Important also is the observation that, with the JW gauges, all matrix elements of H are
real. For such a Hamiltonian matrix it is a trivial fact that either the ground state vector (i) is
real (or can be made real with a simple change of phase) and therefore carries not currents or (ii)
is degenerate. In case (ii) the real and imaginary parts of the ground state vector correspond
to degenerate states which also carry no current. Case (ii) does not exclude the possibility
of broken symmetry ground states which carry currents. If the degeneracy of the ground
state is associated with the spin part of the wavefunction then there must be a finite value of
S(S + 1) = Ŝ2; i.e., such degenerate ground states must have a net ferromagnetic moment,
albeit as small as S = 1/2.
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(b)(a)
π
8

π
4

Figure 2. (a) The π/4 string gauge transformation. There is an effective half flux quantum in the
shaded squares. (b) The equivalent with π/8 strings.

Up to this point the flux tubes have been attached to the particles. It is equally possible
to attach the flux tubes, and the false charge which sees them, to the ‘empty’, i.e. down spin
sites. This scheme will be assumed in what follows.

It is clearly possible to associate an operator with a flux tube at a given site. In the
operator un({Q̂i}) = exp[−i

∫ n−1
0 �a · d�r] the integral from the origin to site n passes by any

path which does not include particles and specifically along some path which does not pass
through any sites. The argument {Q̂i} indicates that un is a function of the position of all of the
particles, or more precisely reflects the position of all of the down spin sites since it is these
which determine �a. Clearly this is a unitary operator such that u†

nun = unu
†
n = 1. For a JW

gauge u†
n = un. Trivially these u†

n operators commute with each other but anti-commute with
the particle operators. This formal development permits the, for example, tij b

†
i bj term to be

written as

−tb
†
i uiu

†
j bj (14)

and, for example, c†
i↓ = u

†
i bi . It should be noted that these unitary operators always appear in

such a fashion that u†
i is associated with the creation of a down spin site along with a flux tube

while ui only occurs when such a tube is destroyed. Using these operators the t–J model,

H = −t
∑
〈ij〉

(f
†
i bib

†
j fj + b

†
i uiu

†
j bj + H.c.) +

∑
〈ij〉

J

2
(f

†
i uiu

†
j fj + H.c.)

+
J

4

∑
〈ij〉

(2f †
i fi + b

†
i bi)(2f

†
j fj + b

†
j bj ) − J (2N̂↑ + N̂0). (15)

The present JW gauge does not reflect the symmetries of the lattice and in addition the
interaction between fermions which is induced by the π -flux strings is of infinite range. The
usual gauge with �a = (1/r) �φ is an evident alternative but is not particularly adapted to lattice
problems. It is simpler to adapt a different string gauge. Each π string can be thought of
as made of four ±π/4 strings, where the sign is arbitrary. Separating one such string and
moving it so it cuts different bonds, see figure 2(a), amounts to some gauge transformation.
(The flux pattern is such that there is an effective half flux tube in each of the two shaded
plaquettes.) If instead π/8 strings are used it is possible to have the gauge convention shown
in figure 2(b). Continuing this bifurcation process will lead to interactions which ∼(1/r). The
arrow indicates the sign of the phase change. As in electrostatics, a positive magnetic flux
tube with arrows heading away from the tube will have positive sign changes when a particle
crosses a line heading in a clockwise direction.

It is of interest to generalize the present approach to bi-layers and three dimensions
in general. While the fermion-plus-flux-tube type of aynon does not generalize to three
dimensions there is no real problem with applying the JW transformation. A bi-layer can
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JW sheet (b)
10

13
141516

18

2
3 4

5
7

8
9

bond

(a)
11

1217

1 6

(c) (d)

Figure 3. (a) An 18-site bi-layer is viewed as being a single folded plane and the zig-zag path
1, 2, . . . , 17, 18 is designated on that plane. (Site 10 is hidden behind the sheet but can be seen
in (b) and (c).) The JW sheet is attached to site 11, which lies on the path between the illustrated
bond between sites 5 and 14. That the sheet cuts this bond implies that the sign of the bond changes.
(b) A similar JW sheet attached to site 13 also lies on the path between these sites and the sheet cuts
the bond, indicating again that such a particle causes a change of sign. However in (c) the sheet
attached to site 15 is not on the path between 5 and 14 and indeed the sheet does not cut the bond
indicating that there is no change in sign. In general there are many sheets as in (d). The sheet
attached to site 4 in the lower plane does not cut the bond and there is therefore only a single change
of sign associated with the particle at site 11. Explicitly the sheet which passes through site 11,
coordinates x = −1, y = 0 and z = 1, was generated by z = 1−0.4 tan−1[3(y+4 tan−1{3(x+1)}].

be considered as a single sheet which is folded over and the single sheet is then reduced to one
dimension using again, for example, the zig-zag path of figure 1(a). A fully three-dimensional
system can similarly be mapped to a corrugated sheet and then the sheet reduced to one
dimension. On two dimensions the JW transformation is effected by attaching π flux strings
to the particles. The generalization to three dimensions is to attach sheets to each particle.
Consider, by way of illustration, the 18-site bi-layer shown in figure 3. By design, if a sheet is
cut at the level of a given plane then the resulting line has the same topology as the flux strings
of figure 1 and the sign of a intra-plane bond (not shown) is given, as before, by (−1)L where
L is the number of such lines, or now sheets, which cross a bond. Each site on the zig-zag path,
indicated by the black lines, has been labelled and advances in the sense 1, 2, . . . , 17, 18 as
shown in figure 3(a). Focus attention on the white bond which connects sites 5 and 14. Within
the JW transformation the sign associated with this bond is (−1)S where S is the number of
particles on the sites 6, 7, . . . , 12, 13 which lie between the ends of the bond on the prescribed
path. The number S is counted using the JW sheets. In figure 3(a) the sheet is attached to a
particle at site 11, identified by an arrow. This sheet cuts the bond indicating, correctly, that
this site must be included in S. Similarly, figure 3(b), the sheet attached to site 13 cuts the
bond and is to be reflected in S. However site 15 which lies on the same row as this latter site
should not have an effect on S and indeed, figure 3(c), the sheet attached to this site does not
cut the bond. Of course, in general there are many particles and many sheets which potentially
are reflected in the factor (−1)S . In figure 3(d) are shown two sheets, the one attached to site 4
is not in the sequence 6, 7, . . . , 12, 13 and the sheet does not cut the bond between 5 and 14,
while, as described above that attached to the site at 11 does, and should, cut the bond. Notice
the sheets never cross the zig-zag path.

When two particles are interchanged it is necessarily the case that one particle hops through
the JW sheet of the other particle an odd number of times thereby converting the fermions to
hard-core bosons. Once defined with a specific zig-zag path, deforming the sheets amounts
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to a gauge transformation, and a π sheet can be separated into n, π/n sheets which can be
deformed almost at will. In this way the interactions between particles, reflected by the sheets,
can be made short ranged.

(At a technical level it is to be noted that the generalization of two-dimensional flux strings
as three-dimensional JW sheets is a special case corresponding to hard-core bosons. In two
dimensions anyons are realized when the π -strings are replaced by αsπ -strings where αs is the
usual statistical parameter defined relative to fermions. Now the sense of the string phase shift
matters. In order to have a finite attached flux the string phase shift must change sign upon
passing through a particle. Since it is possible to pass from one side of a particle to the other
on the JW sheet this method cannot be used to directly generalize anyons to three dimensions.
However αsπ JW sheets do represent a possible extrapolation between fermions and bosons in
three dimensions which reduces to flux strings in two dimensions but without the sign change.
In is easy to appreciate that in any dimension the corresponding �a = ∇φ(�r) with a suitable
φ(�r); i.e., the flux is strictly zero.)

Whatever the dimension, the bare vacuum |〉−N/2 reflects the absence of particles and
comprises the spin state with Sz = −N/2. It is important that the bare ferromagnetic vacuum
state is highly degenerate. A new vacuum |〉−N/2+1 = (S+

0 /M
−N/2+1
−N/2 )|〉−N/2 is obtained by

acting with the total spin raising operator S+
0 where Mm

n = √
S(S + 1) − nm. The physical

spin vacuum |S〉 comprises the Fermi spin sea. To be specific define this as

|S〉 =
∏
ε�k�0

f
†
�k |〉−N/2 (16)

where ε�k ∝ −γ�k; γ�k = cos kx + cos ky . Given that there are N/2, f -particles (and that
this is an integer) this is a spin singlet. Although this description of |S〉 is appealing, it is
sometimes more appropriate to imagine |S〉 as derived from the Sz = 0 bare vacuum |〉0 . In
the wavefunction f

†
�k is replaced by p↑ = √

2( 1
2 +Sn z) and the empty (down) sites are projected

out using p↓ = √
2( 1

2 − Sn z). With this |S〉 = F({Sn z})|〉0, where {Sn z} is the collection of
local z-component spin operators.

The states f
†
�k |S〉 and f−�k|S〉 are momentum �k excitations with Sz = ±1 respectively

and are related by a particle–hole symmetry at half-filling. In addition to these f -particle
excitations are similar states generated by the flux tube operators ui . A arbitrary state with a
given vacuum Sz = n is of the form F1({Sn z})|〉n and an typical matrix element of ui is

m〈|F ∗
2 uiF1|〉n = m〈|F ∗

2 ui(f
†
i fi + fif

†
i )F1|〉n

= [
n〈|F ∗

2 fiF1|〉n+1δm,n + n〈|F ∗
2 f

†
i F1|〉n−1δm,n

+ n+1〈|F ∗
2 f

†
i F1|〉nδm,n+1 + n−1〈|F ∗

2 fiF1|〉nδm,n+1
]

+ · · · (17)

where the ellipsis reflects terms which are vacuum on-diagonal. Use is made of the fact that both
ui and the projectors p↑ = f

†
i fi and p↓ = fif

†
i commute with the Fn({Sn z}) and each other,

and that for example, uif
†
i fi = N−3/2 ∑

�k�k′ �k′′ exp(i�k · �rn) exp(i�k′ · �rn) exp(i�k′′ · �rn)u�kf
†
�k′f�k′′ .

The vacuum off-diagonal part corresponds to contracting out a factor of S±/N . This occurs in
two ways for each term to give (17). The two vacuum diagonal terms have a different number
of particles in the final state, corresponding to (spin) particle–hole excitations. The result can
be written symbolically as

ui = 1
2 [fiS

+ + f
†
i S

− + S+fi + S−f †
i ] + · · · (18)

with the understanding that for, for example, in S+fi the S+ acts only on the |〉0 vacuum to
the left. The ellipsis represents terms which are necessarily diagonal in the bare vacuum state.
Since un is unitary un|S〉 is a normalized state vector and it is to be noted that the four vacuum
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off-diagonal terms displayed above exhausted exactly one half of this normalization. The
on-diagonal ellipsis, evidently, has equal weight.

That, when it acts on the physical vacuum, the flux tube operator un can create excitations
(with a cancelling change in the total Sz) is also evident from a comparison between
Sz n + 1/2 = f †

n fn and S+
n = f †

n un. The effect of these two operators acting upon the
singlet physical vacuum must be essentially the same; i.e., the effect of un is the same as fn

but without a change in Sz. Multiplying (18) by f +
n gives S+

n = f †
n fn(S

+/N) + (S+/N)fnf
†
n .

(There is no commutator with S+ in the last term because of the understanding that this acts
on the vacuum to the left.)

Upon examining the ensemble of physical operators it should be observed that these can
be consistently interpreted in terms of f -particles which are S = 1/2 spinons with Sz = +1/2
while the flux-tube particles are the equivalent with Sz = −1/2.

For the t–J model, in the absence of doping, the spin sector kinetic energy is generated
by the vacuum diagonal part of the transverse exchange, i.e.

+
J

2
f

†
i uiu

†
j fj . (19)

For a near uniform state this must have an expansion + J
2 f

†
i uiu

†
j fj = a1f

†
i fj +f

†
i fj

∑
a2
mδnm

where the δnm are deviations from the uniform state. Since, by definition a1 = 〈uiu
†
j 〉 does not

depend upon the uniform state involved, it can be evaluated, with a suitable gauge, for a state
vector which is an equal weight of the two Néel states. Both states have a uniform field with
one half a flux quantum per plaquette and in a (non-JW) gauge which reflects the symmetry of
the lattice this implies that the change of phase introduced by the uiu

†
j → exp(±iπ/4). There

are no direct matrix elements between these two states and so a1 is given by a simple average
of these two phases; i.e., the leading term site diagonal part of (19) is

+
J

2
cos

π

4
f

†
i fj ≡ J ′

2
f

†
i fj (20)

with J ′ = J/
√

2. Thus, for example, for two dimensions the bare energy of an excitation of
momentum �k is ε�k = 2J ′γ�k .

The next term in the expansion of (19), written as + J
2 S

+
i S

−
j , is obtained using the vacuum

off-diagonal part of S+
n deduced above. There are four equivalent contributions to give the

result,

+ Jf
†
i fifjf

†
j + H.c. ⇒ +Jf †

i f
†
j 〈fjfi〉 + H.c. ≡ ±.0f

†
i f

†
j + H.c. (21)

which admits a pair amplitude. With suitable signs, the Fourier transform corresponds to
d-wave pairing, i.e. a term

1

N

∑
�k

.�kf
†
�k f

†
−�k + H.c. (22)

where.�k = .0(cos kx−cos ky). Clearly, the original exchange term does not change the value
of Sz and the pairing in (22) is to be interpreted in terms of �k, Sz = 1/2 and −�k, Sz = −1/2
spinon pairs.

The final version (15) of the JW formalism would appear very similar to the usual auxiliary
(slave boson) particle scheme. The down spin fermion has been replaced by a flux tube
operator u

†
i . However this parallel is very misleading. In terms of up and down fermions

the transverse exchange is + J
2

∑
〈ij〉(f

†
↑if↓if

†
↓j f↑j + H.c.). Invariably in the ‘slave boson’

approach this interaction is subjected to a mean field factorization:

−
∑
〈ij〉

J

2
〈f †

↓j f↓i〉f †
↑if↑j + H.c. (23)
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which changes the sign and reduces the magnitude of the matrix elements for the hopping of
the spin particles. This latter philosophy is very attractive since it separates the up and down
degrees of freedom and leads to an identification of the f

†
σ i as spinons, i.e. spin 1/2 particles.

The cost is that the constraint is all but sacrificed. The point of the present formalism is precisely
to maintain this constraint exactly and yet to show that the excitations are indeed spinons.

The present formalism has its own natural approximations. If t � J , the motion of
the holes is certainly rapid compared to the dynamics of the lowest-lying spin levels. If the
concentration of holes is sufficient there will occur a motional averaging of the spin wave
function. The co-movement of the spins, as the holes hop, will cause the spinon–spinon
interactions to be averaged and suppress the associated correlations (and ordering). Given their
rapid motion, the holons can be added by perturbation theory. On the charge timescale the spins
can be considered as frozen. Consider a given up spin at site n, it sees itself in a virtual crystal
in which there is a certain density of holes at near neighbour sites. This up spin then admixes
with the holes on the neighbour sites and this implies a probability ∼xt/|µ| → x of observing
a hole at n. Whatever the details, it is implied that the state which was f †

n |〉 now becomes

(αf †
n + βb†

nu
†
n)|〉 ≡ f̃ †

n |〉 (24)

where |α|2 + |β|2 = 1 with the concentration of holes x = |β|2 and where the flux tube u†
n

is needed in order that f̃ †
n have fermion commutation rules. A Fermi sea is now constructed

from the Fourier transform of the f̃ †
n . The combination found in f̃ †

n implies a pairing between
the b†

n holons and fn. This can be associated with Kondo physics since with a small β the
excitations are relatively heavy. Likewise, by spin symmetry, the state for a down spin site,

u†
n|〉 → (αu†

n + βb†
nu

†
n)|〉. (25)

With Sz = 0, the presence of a f̃ †
n particle implies a probability of 1−x of finding an up spin at

siten, and there areN/2 such particles independent of x. In total, there are (N/2)(1+x) degrees
of freedom for such a system and the present ‘Kondo’ approximation implies that there are
only N/2 low-energy excitations and that these are predominantly ‘spinon-like’ with a small
admixture of holon character. For low enough energies, the remaining holes are reflected (25) as
a renormalization of the vacuum. The site independence of β implies a holon condensate with
�q = 0. The admixture of holon character into the f -particles implies that the term, for example
−tb

†
i uiu

†
j bj contributes to the hopping matrix elements for these renormalization particles. As

a result J ′ → Je = (1 − x)J ′ − 2xt . With this approximation, the effective Hamiltonian is

Hs = Je

∑
�k

γ�k
(
f̃

†
�k f̃�k + H.c.

)
+ (1 − x)2

∑
�k

[
.�kf̃

†
�k f̃

†
−�k + H.c.

]
. (26)

All interactions between spinons and holons which appeared in (15) have been dropped since
these will be averaged towards constants by the rapid hole motion. The physical conduction
electron propagators 〈Tτ c

†
n↑(τ )cm↑(0)〉 = c〈Tτfn(τ )f

†
m(0)〉, i.e. are c, the fraction of sites with

a condensed holon, times the spinon propagators.
Of considerable importance is the fact that the kinetic energy is proportional to Je =(

J ′ − 2xt
)
. Nagaoka’s theorem [3] implies that a small hole doping favours ferromagnetism.

The ferromagnetic, i.e. negative sign of the 2xt reflects this fact. (This is the itinerant hole
version of ring exchange.) Clearly the anti-ferromagnetic J ′-term must have the opposite sign.
As a consequence, in the absence of pairing, this Hamiltonian would exhibit a quantum critical
point (QCP) at xc = (J ′/2t) at which the spinon band collapses. Clearly the specific heat and
magnetic susceptibility diverge at such a point. Since superconductivity is favoured by such
a large density of states, Tc will be a maximum near xc and superconductivity will ‘hide’ this
QCP. This might be described as a pseudo-QCP with the real QCP being shifted to smaller
concentrations at which the holons condensate and superconductivity first appears.
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